If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+2510x=0
a = 10; b = 2510; c = 0;
Δ = b2-4ac
Δ = 25102-4·10·0
Δ = 6300100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6300100}=2510$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2510)-2510}{2*10}=\frac{-5020}{20} =-251 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2510)+2510}{2*10}=\frac{0}{20} =0 $
| 9(4-n)=3n-7 | | x+4x+(5x-19)=180 | | 2|y-3|-17=-3 | | 7(-3+5x)=-366 | | 67.8=6(m+2.4) | | (2y-9)(5y+6)=0 | | 2(-4x=7)=-2 | | -33=-3y | | 4(x+3=2(x-1) | | 43*12=x | | F(x)=-4.9^2+12 | | 3x=7(4+3) | | x+4x+(4x-14)=180 | | 4x+13x+5=6x+32 | | (2/3)x+1=5 | | 4x+6+68=180 | | -5x+1=-48+2x | | 2x+7=6x+21 | | x+1/2=33/4 | | 1/2(x-5)+2x=3 | | 4x–9=11x. | | x+1=-x+21 | | x=19+42=3x–15 | | 100-x=9x | | (2x+6)^2=64 | | 9x=2049 | | -7x+14=56x | | n-7=12(n-2) | | .5(x-5)+2x=3 | | x-3=-7x+21 | | x+5x+(4x-18)=180 | | (20+4n)-(20+3n)=n |